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the Method of Moments when used with higher-order representations
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Abstract: The locally-corrected Nystrbm method kernels [3]. Only recently has the method been
is described, and the accuracy of the currents extended to treat the singular integral equations
produced by it and the method of moments are arising in electromagnetic radiation and scattering
compared. Results suggest that when the problems [4-5]. The extended method is known
underlying representation has the same degree, the as the locally-corrected Nystr6m (LCN) method.
methods are comparable in accuracy. Additional Reference [4] provides an in-depth discussion of
results are presented to illustrate the Nystr6m the LCN method for application to two- and three-
approach, and advantages and disadvantages of dimensional electromagnetic scattering problems.
the method are reported. Reported advantages of the LCN method are that

it is well-suited for higher-order implementation,
offers reduced matrix fill costs, and is easily

Introduction amenable to fast iterative solvers such as the fast
multipole method.

The method of moments (MoM) for solving
integral equations [1] has been widely used for Although references [4-5] provided a comparison
more than three decades, and is generally well- of data for LCN scattering cross section
accepted throughout the electromagnetics calculations, they did not specifically report the
community. The process involves representing an accuracy of the currents (or the internal fields in
unknown quantity with a known basis, and the case of [5]). In this paper, the accuracy of the
weighting the moments of the equation to be currents produced by the method of moments and
solved with suitable testing functions to form a the locally-corrected Nystr6m method will be
linear system. The method is well-suited for compared for the TE electric-field integral
treating equations with singular kernels, since it equation (EFIE) for conducting cylinders. The
incorporates integrals over testing functions which ease of use and relative efficiency will be
ultimately reduce the order of singularities. reported, as will differences in philosophy

between the methods and differences in their
The Nystr6m method for the solution of integral implementation.
equations was proposed in 1930 [2]. The essence
of the approach is that the integral operator is
replaced with a suitable quadrature rule. The The Method of Moments Implementation
integral equation is enforced at nodes (sample
points) of the rule, and leads to a linear system of Consider the MoM approach for solving the TE
equations for the samples of the unknown EFIE for two-dimensional scattering from
function at the node points. The drawback of the perfectly conducting cylinders. The operator in
classical Nystr6m method is that it cannot be used this case is an integro-differential operator with
directly for integral equations with singular two derivatives that can be distributed between
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the current density, the Green's function, or the
testing functions. This type of operator is also K(t,t') = {k)cos(fo-fs)

referred to as a hypersingular integral operator + cosQ cosQ a2

[4]. Since the TE EFIE operator involves 0• s axS 2

derivatives, it is generally thought that a key a2

requirement of the MoM implementation is that + sin(fo0 +Q5s)
the cell-to-cell continuity of the current be a2 1 (2)

maintained by the basis functions, to avoid + sinfQ0 sing2s - Hz-(2
fictitious line charge densities associated with oy -j

jump discontinuities in the current. A widespread where Q. and Q, denote the angles between the x-
implementation uses pulse (piecewise-constant) axis and the contour tangent vectors at the
testing functions to absorb one of the derivatives observer and source points, Hv(') denotes the
and piecewise-linear basis functions to provide a Hankel function, and
minimum degree of differentiability while
preserving cell-to-cell continuity [6]. R = 4 [x(t)-x(t')] 2 + [y(t)-y(t')]2  (3)

For purposes of this study, an MoM
implementation was developed for the TE EFIE The Nystr6m approach involves replacing the
using pulse testing functions with basis functions integral operator in (1) by a suitable quadrature
that can range in degree from piecewise linear to rule:
piecewise cubic. The cylinder contour of interest
is divided into cells, each with parabolic shape to
better represent curved surfaces. The basis -t(t) is .=ja l WpJ(tp) K(t,tp) (4)
functions are Lagrangian polynomials that span p
each cell and have evenly-spaced interpolation
points throughout each cell. Continuity between where {wp,tp} denote the weights and sample
cells is maintained by associating the functions points of the rule. If K is nonsingular, (4) can be
interpolating at the boundary between adjacent evaluated at any location t. Under these
cells with the same coefficient. Matrix entries are conditions the EFIE

computed with the aid of Gaussian quadrature
rules that incorporate the logarithmic singularity t(t) Finc=-t(t) Es (5)
of the two-dimensional free-space Green's

function when necessary [7]. may be enforced at each of the sample points t = t

to obtain a linear system in terms of the samples
of the current density as the primary unknown.

The LCN Implementation (This is the classical Nystr6m method.) The TE
EFIE kernel in (2) exhibits a strong singularity,

The TE EFIE incorporates the scatttered field at however, and the rule in (4) cannot be used when
location t obtained from the operator R--O since the result is infinite. In that case, a

"local correction" to (4) is used, as proposed by

-t. Es= j. K(t,t') J(t') dt' (1) the authors of [4].

The LCN discretization process is as follows. The
where the unit vector is tangential to the contour cylinder contour is divided into cells, and a
of the cylinder at t, k is the wavenumber, 'n is the quadrature rule of a certain order is defined for
medium impedance, J is the current density each cell. (In the present study the quadrature
phasor, and order was the same in all cells.) For widely-

spaced cells, the classical Nystrbm approach of
equation (4) is employed for the interactions. For
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unknowns { J(tQ)}, the LCN matrix entry for an t (t). E(B ) - K(t,t') Bn(t') dt' (9)
observer at point with global index tm and a source k t
at point with global index t,, is given by the
integrand sample By this process, L is synthesized so that the

summation in (7) yields the correct near fields of
j any source function J(t) that can be represented by

j wn K(tm,tn) (6) the set {BJ}. The system in (8) must be solved for
each observer location tin.

Since most of the matrix entries represent widely-
spaced interactions, the vast majority of the matrix As suggested by [4], an obvious choice for {B,} is
entries have the form of (6). the polynomial set underlying the quadrature rule

(specifically, Legendre polynomials for Gauss-
When the observer and source points occur within Legendre quadrature). We employ enough
closely-spaced cells (in the same cell or adjacent Legendre polynomials (constant, linear, etc.) to
cells, in the present study), however, a completely obtain a square linear system for (8). The basis
different procedure is employed. This alternative functions are abruptly truncated at the cell edges,
approach involves replacing the singular kernel K and the right hand side of (9) must incorporate the
by a nonsingular kernel L so that the scattered jump discontinuities in the basis functions at the
field can be computed using a similar expression: source cell edges. To mitigate the effect of the

singularity in the scattered field produced at each
discontinuity, the scattered field is averaged over

-t(t) -Es=j. I WP J(tp) L(t,tp) (7) an interval of length Tm,, centered at observation
P point tin. The resulting expression is similar to an

MoM matrix entry - and hence offers the
The process requires the synthesis of the needed convenience of using established procedures and
samples of L so that the summation in (7) legacy MoM software to obtain the right-hand
produces a correct overall result for the scattered side of (8). To maintain the linear independence
electric field at each of the closely-spaced of the equations in the case of P quadrature points
observation points. per cell, and to mimic a direct sampling of the

field so that the result in (7) smoothly merges with
A relatively small number of samples of L are that of (4), we used an interval size 0.2/P of the
required. These are obtained by selecting a set of cell extent. Experimentation showed little
"basis" functions {Bn(t)} representing sources and variation in the results as this interval size was
enforcing the relatively small system of equations perturbed.

l B()The extent to which samples of L replace samples
j k W Bn(tp) L(trm,tp) of K can vary; in this study (7) was used for all

P tinteractions between points in the same cell and in
tmm t(t)'ES(B) dt (8) immediately adjacent cells. For an observer cell

Tm JT /2 with P quadrature points, 3P solutions of P x P
matrices are required to compute the entries of L.

where tm is the observer location, t. is the location A more robust approach for small cells would
within the source cell, and Bn represents a basis monitor the extent to which samples of the
function for the current defined over the source integrand agree with those produced by the local
cell. (The source and observer cells may correction procedure and adapt the size of the
coincide.) The expression on the right-hand side local correction region accordingly. (The
of (8) involves the scattered electric field at singularity only arises for the real part of the
location t, produced by source function Bn, given kernel K; in [5] this is exploited by only
by correcting the real part of K. For simplicity, we



PETERSON: ACCURACY OF CURRENTS PRODUCED BY THE LOCALLY-CORRECTED NYSTROM METHOD AND MOM 77

used the local corrections for both real and polynomial in nature, and an implementation
imaginary parts of K.) using p+l quadrature points per cell involves a

polynomial representation of degree p. Thus, we
In summary, interaction terms for "widely- again expect an error of O(AP÷") in the current
spaced" source and observer points are obtained produced by a (p+l)-point LCN implementation.
by sampling the integrand of the EFIE. Since For instance, the error produced by an MoM
these matrix entries are samples of the integrand implementation with quadratic basis functions
in (1), and not an actual integral as the MoM (p=2) should generally exhibit the same decay rate
matrix entries are, the LCN matrix fill time is of O(Ai) as the cell sizes are reduced as an LCN
usually substantially faster than the typical MoM implementation with 3 quadrature points per cell.
fill time. Matrix entries for closely-spaced source
and observer points are obtained by synthesizing a
nonsingular integrand that, if sampled by the same Results for circular cylinders
quadrature rule, yield results for the integral
equivalent to the actual field. As noted in [4], this As an initial test case, we compare results from
process is similar to that proposed by Strain [8] to the MoM and LCN implementations for a circular
create quadrature rules for integrating singular cylinder of 6 X circumference illuminated by a
functions. In the present implementation, the normally-incident plane wave. The angle ý =
additional computational burden associated with 180' represents the specular point on the cylinder
solving the equations in (8) is only incurred for in all cases. Figure 1 shows the error in the
source and observer points in the same cell or surface current density for the results of the MoM
immediately adjacent cells, for linear, quadratic, and cubic basis functions

when a 20-cell model is used to represent the
An interesting aspect of this Nystr6m approach is cylinder contour. This error is defined as
that no attempt is made to enforce cell-to-cell
continuity. The representation for the current is Absolute error Iref - Jnumerical I (10)
implicitly defined by the quadrature rule (eg., a
polynomial up to the degree that the rule can and is determined at the quadrature nodes. Figure
integrate) and is not constrained to be continuous 2 shows LCN results for 2, 3, and 4 nodes per cell,across cell boundaries.2shwLCreutfo2,3an4ndsprcl,

for the same 20-cell model. For convenience,
straight lines are used to connect samples of the

Representation Error error in both figures (the actual error may vary
between nodes in a more complex manner). Both

The MoM uses explicit basis functions to methods illustrate an improvement in accuracy as

represent the current. The error in the current the order of the representation is increased. The

e polynomial reference solution was obtained to at least 5
interpolation error for the particular basis decimal places using the eigenfunction series [10]interpolation errorthforotheeparticularubasis
functions. Consider a polynomial basis of degree and compared with the complex-valued surface

p, where p=l represents linear, p=2 represents current phasor at the interpolation points on the

quadratic, etc. For a problem with uniform cell surface. The solution has a current magnitude that

size A, the expected interpolation error is of order approaches 2.0 around the specular point and the
errors in Figures 1 and 2 are the absolute errors onO(AP+I). This error has been confirmed by that same scale.

example for integral equation formulations and

the current density error appears to be
independent of the testing function degree [9].

The underlying representation used by the LCN
with Gauss-Legendre quadrature is also
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required 60 unknowns.) Relative to the peak
MoM, ka=6, 20 cell model, TE EFIE current magnitude of 2.0, the cubic basis MoM

(10 unk/k) and 4-point LCN (13.3 unk/%) reduce
1 the peak error in the current to 1 % or less.

.1 LCN, ka=6, 20 cell model, TE EFIE

I-

.01
0

0 "
.0017 linear S•quadratic E =

cubic, 0 .017

.0001

0 9'0 180

phi U, .001-- 4P=2

4 P=3Figure 1. The error in the MoM current for a P=4
circular cylinder, ka=6. Linear, quadratic, and
cubic bases are used with a 20-parabolic-cell .0001
model. 0 90 180

phi
Figure 2. The error in the LCN current for a

In Figures 1 and 2, the linear-basis MoM circular cylinder, ka=6. A 20-parabolic-cell
(involving two overlapping basis functions per model is used with 2, 3, and 4 points per cell.

cell) exhibits current error that is generally
comparable to that produced by the LCN
implementation with 2 quadrature points per cell. Figure 3 shows a plot of the error in the current
The quadratic-basis MoM appears to produce an for a circular cylinder with ka=6 1. The peak and

overall error level similar to the 3-point LCN average errors from the MoM with quadratic basis
result. These findings support the anticipated functions and LCN with 3 points per cell are
behavior of the current error as discussed above. compared, for cylinder models ranging from 10
However, the MoM basis functions impose cell- cells to 100 cells. Both the peak and average error
to-cell continuity, so one unknown coefficient is curves exhibit an O(At) behavior as the cell sizes
shared between cells. As a consequence, the are redcead, as predicted above. As in the
MoM uses fewer unknowns to achieve a given previous example, the LCN requires more
level of accuracy. The unknown density in unknowns than the MoM for the same cell
Figures o and 2 ranges from 3.3 unknowns/se (20 density.
unknowns distributed around 6 c i for the linear-
basis MoM) to 13.3 unknowns/(d (80 unknowns

distributed around 6 X for the 4-point LCN). (The
quadratic-basis MoM result used 40 unknowns;
the 3-point LCN result with similar accuracy
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ka-11, TE EFIE interest to examine the behavior of the surface
current error within each cell. The LCN does not

1impose cell-to-cell continuity, and consequently
one might expect to find larger errors near the cell
edges. In fact, such behavior does seem to arise in
the 4-point result in Figure 2. The opposite
behavior is exhibited to some extent by the MoM
result for cubic basis functions in Figure 1.

S .1 However, the overall error of the 4-point LCN is
U no worse than the cubic basis MoM. From an

examination of these data and other circular
"cylinder results (not shown), we find no evidence
of a reduction in overall accuracy due to the non-
continuous currents used by this LCN

X implementation. (This observation confirms that
0 of the authors of [4].) This conclusion implies

. - peak error LCN that a relaxation of continuity conditions might
* peak error MoM also be possible in MoM formulations.

average error LCN

X average error MoM Results for other cylinder shapes
.001

1 10 As an additional comparison of the MoM and
LCN for similar representation orders, Figure 4

Figure 3. Comparison of the peak and average shows the magnitude of the current density for a
current error produced by the MoM with quadratic square cylinder with side dimension 5.2 X,. The
basis functions and the LCN with 3 points per cylinder is illuminated by a plane wave in an
cell, for a circular cylinder with ka=l 1. The edge-on configuration. Results are shown for a
current magnitude has a maximum value of 32-cell model (8 cells per face) with 4-point LCN
approximately 2.0 at the specular point and the and cubic-basis MoM implementations. A 3-point
errors shown are the absolute errors on this scale. LCN result obtained from a 160-cell model is
Averaging is performed around the circumference. shown for comparison. (This reference solution
The data appear to exhibit O(A3) behavior, was obtained from a combined-field formulation

to ensure the absence of spurious internal
resonance currents [11].)

From a comparison of Figures 1-3, and an
investigation of other circular cylinder geometries, Both the MoM result, involving a density of only
it appears that the overall accuracy between the 4.6 unknowns/k, and the LCN result, involving
MoM and the LCN is similar when the number of 6.2 unknowns/X, exhibit a noticeable but similar
overlapping basis functions (MoM) equals the level of error compared with the reference
number of quadrature points (LCN). This result is solution. If the model is refined from 32 cells to
in accordance with the expected O(AP÷") behavior. 40 cells, the 4-point LCN (7.7 unk/,) and cubic
It also appears that because the MoM imposes basis MoM (5.8 unk/,) results for that model (not
cell-to-cell continuity, it uses fewer unknowns shown) are indistinguishable from the reference
overall to achieve this accuracy. solution on the scale of Figure 4. These data

support the previous findings that the MoM and
Given the widespread notion that cell-to-cell LCN results for a given order of representation are
continuity is a necessary condition for accurate similar.
solutions of the TE EFIE with the MoM, it is of
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5.2 by 5.2 sq cyl, TE EFIE, 32-cell model (11.8 unk/k) is in good agreement with the
reference solution on the scale of the figure.

2.0 , 24 by 6 elliptical cylinder, TE CFIE

2

.)

"C
M LCN, P=4 , ,X ,

E M oM , cubic 
K X K

1.0 LCN, CFIE, 160- ell P=3 K

,C K

K E
.4-

0.0 "l = 8
0 90 180 K 200 cells, P=2, 7.8 unk/wI K 200 cells, P=3, 11.8 unklw

phi - 100 cells, P=6, 11.8 unk/w

Figure 4. Comparison of the surface current
produced by the MoM with cubic basis functions
and the LCN with 4 points per cell, for a square 0
cylinder with cross-sectional dimensions 5.2k by 0 90 180

5.2X, modeled with 32 cells. A reference solution phi

obtained from a 160-cell model is shown for Figure 5. Results from the LCN method using a
comparison. 200-cell model of an elliptical cylinder of

dimensions 24k by 6X.

As a final example, consider an elliptical cylinder
with overall cross sectional dimensions 242 by Figure 6 shows similar results from 3-point (5.9
6X, illuminated along the narrow axis. This unk/X) and 4-point (7.8 unk/k) LCN
cylinder has a perimeter dimension of implementations obtained with a 100-cell model.
approximately 51k. Figures 5, 6, and 7 show The 3-point implementation exhibits considerable
various LCN results obtained with 200, 100, and error, but the 4-point implementation appears
70 cell models and 2-6 quadrature points per cell. correct on the scale of the figure (and at the same
This series of plots attempts to demonstrate the unknown density that produced a substantial error
relative density of unknowns, for different degree with the 2-point representation of Figure 5).
representations, needed to obtain accurate
solutions from the LCN approach, or equivalently, Figure 7 shows 5-point and 6-point LCN results
how the cell sizes used in the models may vary obtained with a 70-cell model. The 5-point result,
with changes in the number of quadrature points obtained with a density of 6.9 unknowns/X,
per cell. exhibits a slight error relative to the other curves.

These figures suggest a slight trend toward
Figure 5 shows results from 2 and 3-point LCN reducing the number of unknowns per wavelength
for a 200-cell model. The P=2 result (7.8 unk/%) as the polynomial degree of the representation
exhibits a noticeable error, while the P=3 result increases. (Since these results are obtained with

relatively large cells, these figures do not show
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the substantial improvement in accuracy possible 24 by 6 elliptical cylinder, TE CFIE
with higher orders at sufficiently high cell
densities.) 2

24 by 6 elliptical cylinder, TE CFIE

2 
V1

E

X~ 

x x 

E 

X

O) 1 
70cel, P, 6.9 unk/w

E 
0 70 cells, P=6, 8.2 unk/w

C0 

-- 100 cells, P=6, 11.8 unk/w

X 
o

L.0 
9'0 180

100cells, P=3, 5.9 un klw p h i

100 cells, PP4, 7.8 unklw
- 10ells, P=6, 11.8 un1w Figure 7. Results from the LCN method using a

70-cell model of an elliptical cylinder of
0 dimensions 24, by 6,.

0 90 180

phi The primary difference between the LCN and
Figure 6. Results from the LCN method using a MoM codes is that a P-point LCN implementation

100-cell model of an elliptical cylinder of essentially includes all the functionality needed to

dimensions 242 by6X, 
implement lower degrees. By adding the

appropriate lower-order quadrature weights and
sample points, the LCN code can easily treat

Comment on program complexity 
degrees from 1 to P. An MoM implementation of

degree p does not necessarily include lower
For a fixed degree of representation, an LCN code degrees. To extend either approach to higher
requires a developmental effort similar to that of degrees, the programmer must add the additional
an MoM code. Both procedures use MoM-like basis functions, their derivatives, and appropriate
convolution integrals for the near-diagonal terms, procedures to compute the necessary integrals. If
The LCN code also requires samples of the kernel numerical quadrature is used to compute the
for the off-diagonal terms, an additional routine integrals, the extension of either code to other
not required by MoM codes (however, some degrees is a relatively straightforward task.
implementations of MoM codes may use other
approximate expressions for widely spaced source
and observer points).
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Conclusions including the quadrature rule for the lower
orders.) Thus, the LCN offers a relatively easy

By comparing the accuracy of the current density implementation of p-refinement strategies, where
produced by the MoM and LCN implementations the polynomial degree of the representation can be
for a number of examples, we arrive at several increased until some measure of accuracy is
interesting observations, achieved. Both theory and experience suggest

that p-refinement schemes are more efficient than
First, for the same model and the same number of h-refinement schemes (reducing cell sizes to
overlapping functions per cell (MoM) and sample improve accuracy). Adaptive p-refinement
points per cell (LCN), the overall accuracy of the techniques, where each cell in a model can have a
surface current density appears similar. This different order, should also prove easier to
behavior is observed despite the fact that the LCN program in the context of an LCN approach than
representation does not impose cell-to-cell in an MoM approach.
continuity. Because the MoM representation uses
one fewer unknown per cell for a given number of
overlapping functions, the overall accuracy of the References
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